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Motivated by the work of Jones [1], Sundararajan [2], Laura and his co-authors [3–5], the
authors have developed a method to estimate the fundamental frequency of a plate through
the finite element solution of its static deflections under a uniformly distributed load
without the associated eigenvalue problem. The computed results for the case of a clamped
rectangular plate with a central circular hole are found to be in reasonably good agreement
with existing test results [6]. The approximate method followed here will be useful for
determining the fundamental frequency of elastic plates of arbitrary geometry and
boundary conditions.

A frequency–static deflection relation for a thin elastic plate occupying an area A inside
the boundary S is [7]

rhv2(Wmax /q)= af , (1)

where

af =g gA

c dx dy>g gA

c2 dx dy. (2)

The static deflection of the plate under a uniformly distributed load, q, is taken in the
form, W=Wmaxc(x, y). Wmax is the maximum deflection and =c(x, y)=E 1[(x, y)$S. v is
the fundamental frequency, r is the mass per unit area and h is the plate thickness.

A four-noded quadrilateral isoparametric plate element is chosen for obtaining the static
deflection of a plate under a uniformly distributed load. As in the finite element
formulation evaluation of integrals in equation (2) for af is described below. The geometry
of a four-noded plane isoparametric element is mapped into the normalised square space
(j, h), (−1E jE 1,−1E hE 1) through the transformation

xe = s
4

i=1

Ni (j, h)xie , ye = s
4

i=1

Ni (j, h)yie , (3, 4)

Ni (j, h)= (1+ jji )(1+ hhi ), (5)

where ji , hi =21 for the corner nodes. (xie , yie ) are the nodal co-ordinates of the element.
The displacement We within the element is interpolated by the same function Ni (j, h) of
equation (5) for the nodal displacement Wie as

We = s
4

i=1

Ni (j, h)Wie. (6)
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Figure 1. Finite element idealisation for a clamped rectangular plate with a central circular hole.

For a finite element system which is composed of m elements, the integrals in equation
(2) can be evaluated to obtain af as

af =Wmax s
m

e=1 0g
1

−1 g
1

−1

Wedet =Je = dj dh1> s
m

e=10g
1

−1 g
1

−1

W2
e det =Je = dj dh1, (7)

where the determinant of the Jacobian of transformation [Je ] is

det =J==(1xe /1j)(1ye /1h)− (1xe /1h)(1ye /1j).

Figure 2. Comparison of the nondimensional frequency parameter, l with r/b for a clamped rectangular plate
with a central circular hole. –––, present study; ---, free vibration analysis (NISA); w, test data [6].



    375

T 1

Comparison of the non-dimensional frequency parameter (l) for clamped rectangular plate
with a central circular hole (a/b=2)

Present study
Free vibration ZXXXXXXXXCXXXXXXXXV

r/b analysis (NISA) (l) a (×10−2) af l

0·00 24·81 0·2539 1·6454 25·46
0·05 24·72 0·2669 1·7242 25·40
0·10 24·91 0·2752 1·7994 25·59
0·15 25·60 0·2665 1·8388 26·25
0·20 27·00 0·2455 1·8645 27·56

A ten-point Gaussian integration is adopted to evaluate the integrals. The fundamental
frequency, v is determined from equation (1) after calculating the value of the constant,
af . The results are presented in the non-dimensional form as

Wmax = a(qb4/D), (8)

l=zrh/Dvb2 =zaf /a (9)

where D is the flexural rigidity.
The adequacy of the present method of computing the fundamental frequency is

examined for the cases of a cantilever rectangular plate and a clamped rectangular plate
with a central circular hole. A finite element solution is obtained for the static deflections
of these plates by using a four-noded quadrilateral isoparametric plate element available
in the well-known finite element code NISA (Numerically Integrated elements for System
Analysis). Finite element idealisation for a clamped rectangular plate with a central
circular hole is shown in Figure 1. a and b are the length and width of a rectangular plate,
and r is the radius of the circular hole.

The finite element result for the non-dimensional maximum static deflection, a, of a
clamped rectangular plate (a/b=2) is 0·002539 whereas reference [8] gives 0·0025. The
results compare well with those of the free vibration analysis using NISA and the test
results compiled by Leissa [6], in Figure 2 as well as in Tables 1 and 2.

This approach is also applied to a clamped and simply supported circular plate with a
concentric circular, free hole. This case is interesting since an exact solution is available
for the frequency [6], and for the static loading problem [8]. Finite element idealisation
of the annular plate is shown in Figure 3. The ratio of inner radius (ri ) to outer radius
(ro ) is taken as 0·5. The fundamental frequency, v, is determined from equation (1) after

T 2

Comparison of the non-dimensional frequency parameter (l) for a cantilever rectangular plate

Present study
Free vibration Test ZXXXXXXCXXXXXXV

a/b analysis (NISA) (l) result, [6] (l) a af l

0·5 3·4969 3·34 0·1278 1·5753 3·5106
1·0 3·4759 3·37 0·1291 1·5715 3·4895
2·0 3·4410 3·36 0·1309 1·5623 3·4549
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Figure 3. Finite element idealisation for a circular plate with a concentric circular hole.

T 3

Comparison of the non-dimensional frequency parameter (l) for a clamped and simply
supported circular plate with a concentric circular free hole (ri /r0 =0·5), n=1/3

Free vibration Exact Present study
Roark [8] analysis [NISA] solution [6] ZXXXXXCXXXXXV

Case a l l a af l

Simply 0·0624 5·0116 5·040 0·0624 1·6116 5·019
supported
Clamped 0·0053 17·3830 17·510 0·0053 1·6796 17·530

calculating the value of the constant, af . The results in Table 3 are presented in the
non-dimensional form as

Wmax = a(qr4
o /D) (10)

l=zrh/Dvr2
o =zaf /a (11)

The results compare well with those of the free vibration analysis using NISA and the exact
solution given in reference [6].

The present method of computing the fundamental frequency is found to be in reason-
ably good agreement with the available exact solution/test results of thin elastic plates.
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